Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396696

RESUMO

The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively.


Assuntos
Bacillus , Bacteriocinas , Bacteriocinas/genética , Bacteriocinas/farmacologia , Antibacterianos/química , Cromatografia Líquida , Escherichia coli/metabolismo , Espectrometria de Massas em Tandem , Bacillus/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047785

RESUMO

Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential.


Assuntos
Bacteriocinas , Ligilactobacillus salivarius , Nisina , Suínos , Animais , Nisina/genética , Nisina/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bacteriocinas/genética , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Peptídeos Antimicrobianos
3.
Foods ; 13(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201135

RESUMO

Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut microbiota. L. salivarius P1CEA3, a porcine isolated strain, was first selected and identified by its antimicrobial activity against a broad range of pathogenic bacteria due to the production of the novel bacteriocin nisin S. The assembled L. salivarius P1CEA3 genome includes a circular chromosome, a megaplasmid (pMP1CEA3) encoding the nisin S gene cluster, and two small plasmids. A comprehensive genome-based in silico analysis of the L. salivarius P1CEA3 genome reveals the presence of genes related to probiotic features such as bacteriocin synthesis, regulation and production, adhesion and aggregation, the production of lactic acid, amino acids metabolism, vitamin biosynthesis, and tolerance to temperature, acid, bile salts and osmotic and oxidative stress. Furthermore, the strain is absent of risk-related genes for acquired antibiotic resistance traits, virulence factors, toxic metabolites and detrimental metabolic or enzymatic activities. Resistance to common antibiotics and gelatinase and hemolytic activities have been discarded by in vitro experiments. This study identifies several probiotic and safety traits of L. salivarius P1CEA3 and suggests its potential as a promising probiotic in swine production.

4.
Front Microbiol ; 13: 1052686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452926

RESUMO

Circular bacteriocins are antimicrobial peptides produced by bacteria that after synthesis undergo a head-to-tail circularization. Compared to their linear counterparts, circular bacteriocins are, in general, very stable to temperature and pH changes and more resistant to proteolytic enzymes, being considered as one of the most promising groups of antimicrobial peptides for their potential biotechnological applications. Up to now, only a reduced number of circular bacteriocins have been identified and fully characterized, although many operons potentially coding for new circular bacteriocins have been recently found in the genomes of different bacterial species. The production of these peptides is very complex and depends on the expression of different genes involved in their synthesis, circularization, and secretion. This complexity has greatly limited the identification and characterization of these bacteriocins, as well as their production in heterologous microbial hosts. In this work, we have evaluated a synthetic biology approach for the in vitro and in vivo production combined with a split-intein mediated ligation (SIML) of the circular bacteriocin garvicin ML (GarML). The expression of one single gene is enough to produce a protein that after intein splicing, circularizes in an active peptide with the exact molecular mass and amino acid sequence as native GarML. In vitro production coupled with SIML has been validated with other, well described and not yet characterized, circular bacteriocins. The results obtained suggest that this synthetic biology tool holds great potential for production, engineering, improving and testing the antimicrobial activity of circular bacteriocins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...